Mutation Analysis of KCNQ1, KCNH2 and SCN5A Genes in Taiwanese Long QT Syndrome Patients.

نویسندگان

  • Ya-Sian Chang
  • Yi-Wen Yang
  • Yen-Nien Lin
  • Kuo-Hung Lin
  • Kuan-Cheng Chang
  • Jan-Gowth Chang
چکیده

Long QT syndrome (LQTS) is a genetic cardiac disease. Gene mutation affects the structure or function of ion channels that are associated with a high risk of sudden death. The goal of this study was to determine the frequency of KCNQ1, KCNH2, and SCN5A mutations in LQTS in a Taiwanese population. Genomic DNA was extracted from peripheral blood samples obtained from 5 patients with LQTS and the family members of 3 LQTS patients. High resolution melting (HRM) analysis and direct DNA sequencing were used to characterize the KCNQ1, KCNH2, and SCN5A genetic variations. HRM analysis was successfully optimized for 14 of the 16 exons of the KCNQ1, 5 of the 15 exons of the KCNH2, and 23 of the 27 exons of the SCN5A. HRM and direct DNA sequencing was applied to the cohort of 5 cases and some of their family. The genetic testing revealed two pathogenic mutations (p.T309I in KCNQ1 and p.R744fs in KCNH2) and all of the mutational frequencies in KCNQ1 and KCNH2 were 20%. In the two patients who carry the pathogenic mutation presenting with recurrent syncope due to ventricular fibrillation, an implantable cardioverter defibrillator was implanted. We also discovered 11 polymorphisms in KCNQ1, 3 in KCNH2, and 5 in SCN5A. Two-fifths of cases (40%) presented with one of the three major LQTS-causing gene mutations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of ion channel gene variants in patients with long QT syndrome.

BACKGROUND The long QT syndrome (LQTS) is an inherited arrhythmia syndrome with increased QT interval and risk of sudden death. Mutations in genes KCNQ1, KCNH2 and SCN5A account for 90% of cases with genotype determined, and genotyping is informative for genetic counseling and better disease management. OBJECTIVE Molecular investigation and computational analysis of gene variants of KCNQ1, KC...

متن کامل

Splice Site Variants in the KCNQ1 and SCN5A Genes: Transcript Analysis as a Tool in Supporting Pathogenicity

BACKGROUND Approximately 75% of clinically definite long QT syndrome (LQTS) cases are caused by mutations in the KCNQ1, KCNH2 and SCN5A genes. Of these mutations, a small proportion (3.2-9.2%) are predicted to affect splicing. These mutations present a particular challenge in ascribing pathogenicity. METHODS Here we report an analysis of the transcriptional consequences of two mutations, one ...

متن کامل

Genetic testing of patients with long QT syndrome.

Congenital long QT syndrome is mainly caused by mutations in the KCNQ1, KCNH2 and SCN5A genes. The aim of this study was to investigate the prevalence of mutations in these three genes in patients with long QT syndrome or idiopathic ventricular fibrillation seen at our center. The study included nine patients with long QT syndrome and four with idiopathic ventricular fibrillation. The first-deg...

متن کامل

Identification of a novel KCNQ1 mutation in a large Saudi family with long QT syndrome: clinical consequences and preventive implications.

Congenital long QT syndrome (LQTS) is an inherited potentially fatal arrhythmogenic disorder that is characterized by prolonged corrected QT (QTc) interval. Mutations in three genes (KCNQ1, KCNH2, and SCN5A) account for the majority of the cases. However, 10 other genes are now known to be implicated in LQTS. In this work, we describe the clinical and molecular analysis in a large Saudi family ...

متن کامل

Phenotype guided characterization and molecular analysis of Indian patients with long QT syndromes

BACKGROUND Long QT syndromes (LQTS) are characterized by prolonged QTc interval on electrocardiogram (ECG) and manifest with syncope, seizures or sudden cardiac death. Long QT 1-3 constitute about 75% of all inherited LQTS. We classified a cohort of Indian patients for the common LQTS based on T wave morphology and triggering factors to prioritize the gene to be tested. We sought to identify th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International heart journal

دوره 56 4  شماره 

صفحات  -

تاریخ انتشار 2015